国产大模型DeepSeek-V3一夜火爆全球,671B的MoE,训练成本仅558万美元 2024年12月27日,12时33分33秒 OpenAI 阅读 76 views 次 今天,一个国产大模型火遍了世界。 打开 X,满眼都是讨论 DeepSeek-V3 的推文,而其中最热门的话题之一是这个参数量高达 671B 的大型语言模型的预训练过程竟然只用了 266.4 万 H800 GPU Hours,再加上上下文扩展与后训练的训练,总共也只有 278.8 H800 GPU Hours。相较之下,Llama 3 系列模型的计算预算则多达 3930 万 H100 GPU Hours—— 如此计算量足可训练 DeepSeek-V3 至少 15 次。 虽然相对于其它前沿大模型, DeepSeek-V3 消耗的训练计算量较少,但其性能却足以比肩乃至更优。 据最新发布的 DeepSeek-V3 技术报告,在英语、代码、数学、汉语以及多语言任务上,基础模型 DeepSeek-V3 Base 的表现非常出色,在 AGIEval、CMath、MMMLU-non-English 等一些任务上甚至远远超过其它开源大模型。就算与 GPT-4o 和 Claude 3.5 Sonnet 这两大领先的闭源模型相比,DeepSeek-V3 也毫不逊色,并且在 MATH 500、AIME 2024、Codeforces 上都有明显优势。 DeepSeek-V3 的惊人表现主要是得益于其采用的 MLA(多头隐注意力)和 DeepSeekMoE 架构。此前,这些技术已经在 DeepSeek-V2 上得到了验证,现在也成为了 DeepSeek-V3 实现高效推理和经济训练的基石。 此外,DeepSeek-V3 率先采用了无辅助损失的负载平衡策略,并设定了多 token 预测训练目标,以实现更强大的性能。他们使用的预训练 token 量为 14.8 万亿,然后还进行了监督式微调和强化学习。 正是在这些技术创新的基础上,开源的 DeepSeek-V3 一问世便收获了无数好评。 Meta AI 研究科学家田渊栋对 DeepSeek-V3 各个方向上的进展都大加赞赏。 著名 AI 科学家 Andrej Karpathy 也表示,如果该模型的优良表现能够得到广泛验证,那么这将是资源有限情况下对研究和工程的一次出色展示。 正在创业(Lepton AI)的著名研究者贾扬清也给出了自己的深度评价。他认为 DeepSeek-V3 的诞生标志着我们正式 关联资讯: